
Wisconsin Standards for Computer Science
Draft v1.0

2017 Jan 17

What is Computer Science Education?
Wisconsin defines Computer Science (“CS”) as an academic discipline that encompasses the study of computers and algorithmic
processes, including their principles, their hardware and software designs, their applications, networks, and their impact on society. ​The
standards outlined in this document provide an important foundation to prepare students for post-secondary education and careers.

A Vision for Computer Science
The Wisconsin vision for CS standards is shaped by Wisconsin practitioners, experts, and the business community, and is informed by
work at the national level and in other states. The Computer Science Teachers Association (CSTA) is a professional organization that
supports and promotes the teaching of CS. The 2011 CSTA K–12 CS Standards represented the consensus view across the computing
profession, educators and academia, and were categorized into five conceptual strands (Computational Thinking, Collaboration,
Computing Practice & Programming, Computer & Communication Devices; and Community, Global & Ethical Impacts). CS and CS
education are dynamic disciplines. The next community revision of the CSTA standards are expected in mid-2017, but our work in
Wisconsin is informed by an interim draft made available during 2016, as well as a K-12 CS Framework under development with the
involvement of many other states. The Interim 2016 CSTA K–12 CS Standards are categorized into the five concepts of the K–12 CS
Framework: Computing Systems, Networks and the Internet, Algorithms and Programming, Data and Analysis, and Impacts of
Computing. There is some overlap between strands and concepts, but they are not identical. The (interim) CSTA K-12 standards suggest
steps that will be needed to enable their wide implementation. It is intended to introduce the principles and methodologies of CS to all
students, whether they are college bound or career bound after high school. The Wisconsin vision for K-12 CS standards and the CSTA
CS Standards are intended to:

1. Introduce the fundamental concepts of CS to all students, beginning at the elementary school level;
2. Present CS at the secondary school level in a way that will be both accessible and worthy of a CS credit, or as a graduation

credit;
3. Offer additional secondary-level CS standards that will allow interested students to study facets of CS in depth and prepare

them for entry into a career or college; and
4. Increase the knowledge of CS for all students, especially those from under-represented groups in this field.

Computer Science Education in Wisconsin
Computer Science drives job growth and innovation throughout the economy and society. In 2016, demand for computing jobs in
Wisconsin was more than three times the average demand rate for other jobs, and this trend is projected to continue for much of the
next decade. The need for CS education is at an all-time high. All students need foundational knowledge in CS. To offer formal course
work and integrate CS into K-12 learning opportunities, developing CS academic standards across grades K-12 is an essential first step.
Not all Wisconsin school districts offer programs in CS, but all should be offering a systemic approach that prepares students to be
college and career ready.

At the elementary level, CS content and concepts should be integrated throughout the curriculum. Teachers can effectively use CS
concepts in instruction and activities to develop foundational skills and also can create a connection to secondary CS options. At the
middle and high school levels, all students should have access to CS, including the those who wish to pursue advanced courses.

Wisconsin’s Approach to Standards for Computer Science
With the release of the Wisconsin Standards for Computer Science (CS), Wisconsin CS teachers have access to the foundational
knowledge and skills needed to educate students for successful entry into hundreds of high-wage, high-demand occupations and
careers. Vetted by business, industry and education professionals, these standards guide Wisconsin schools, teachers and community
partners toward development and continuous improvement of world-class CS courses.

The learning priorities and performance indicators contained within each set of CS standards consists of knowledge and skills specific to
each of the five strands:

● Algorithms and Programming,
● Computing Systems,
● Data and Analysis,
● Impacts of Computing, and
● Networks and the Internet.

Wisconsin Standards for Computer Science [rev 20170117-003] 2

These are, of course, critical as students develop in understanding CS as a discipline as well as how these skills intersect with other
content areas. In addition, there are many knowledge areas, skills and dispositions that are common to the pursuit of careers and
post-secondary education in many fields.

Numerous existing sets of standards and standards-related documents have been used in developing the Wisconsin Standards for
Computer Science. These include:

● The (Interim) CSTA K-12 Computer Science Standards, revised 2016 ​http://www.csteachers.org/?page=CSTA_Standards

● The K-12 CS Framework ​https://k12cs.org/

● Approved or draft standards from the following states:

○ Arkansas:

http://www.arkansased.gov/divisions/learning-services/curriculum-and-instruction/curriculum-framework-documents/c

omputer-science

○ Florida: ​http://www.cpalms.org/Public/search/Standard​ (under Science K-2, 3-5, 6-8, 9-12)

○ Idaho (Draft): ​http://www.sde.idaho.gov/topics/content-standards/index.html

○ Indiana: ​http://www.doe.in.gov/standards/science-computer-science

○ Massachusetts: ​http://www.doe.mass.edu/stem/standards.html

○ New Jersey: ​http://www.state.nj.us/education/cccs/2014/tech/82.pdf

○ South Carolina (draft): ​http://ed.sc.gov/instruction/standards-learning/computer-science/

○ Texas: ​http://ritter.tea.state.tx.us/rules/tac/chapter126/index.html

○ Washington: ​http://www.k12.wa.us/ComputerScience/LearningStandards.aspx

As with all the standards, the Wisconsin Standards for Computer Science may be taught and integrated through a variety of classes and
experiences. Each district, school and program area should determine the means by which students meet these standards. Through the
collaboration of multiple stakeholders, these foundational standards will set the stage for high-quality, successful, contemporary CS
courses and programs throughout Wisconsin’s PK-12 systems.

Wisconsin Standards for Computer Science [rev 20170117-003] 3

http://www.csteachers.org/?page=CSTA_Standards
https://k12cs.org/
http://www.arkansased.gov/divisions/learning-services/curriculum-and-instruction/curriculum-framework-documents/computer-science
http://www.arkansased.gov/divisions/learning-services/curriculum-and-instruction/curriculum-framework-documents/computer-science
http://www.cpalms.org/Public/search/Standard
http://www.sde.idaho.gov/topics/content-standards/index.html
http://www.doe.in.gov/standards/science-computer-science
http://www.doe.mass.edu/stem/standards.html
http://www.state.nj.us/education/cccs/2014/tech/82.pdf
http://ed.sc.gov/instruction/standards-learning/computer-science/
http://ritter.tea.state.tx.us/rules/tac/chapter126/index.html
http://www.k12.wa.us/ComputerScience/LearningStandards.aspx

Standard Structure
The Wisconsin Standards for Computer Science follow a similar
structure to all Wisconsin State Standards.

Standard Coding

Standard Formatting
● Standard​: Broad statement that tells what students are expected to know or be able to do.
● Learning​ ​Priority​: Breaks down the broad statement into manageable learning pieces
● Performance Indicator by grade band​: Measurable degree to which a standard has been developed or met.

Grade Bands
Grade bands of K-2, 3-5, 6-8 and 9-12 align to typical elementary, middle and high school levels.

● Grade band K-2 and 3-5 performance indicators represent knowledge and skills that should be integrated throughout the
elementary curriculum.

● Computer Science education should be part of the core curriculum for all middle school students. Awareness, exploration and
building foundational skills should occur in middle school.

● Computer Science education at the high school level continues to develop student foundational understanding of CS in the
world through in-depth CS learning, including awareness and exploration activities. Performance indicators marked with a “+”
for grades 9-12 represent advanced CS learning expectations for students with aspirations toward careers and post-secondary
studies in computing disciplines.

Wisconsin Standards for Computer Science [rev 20170117-003] 4

Content Area:

Algorithms and

Programming (AP)

Wisconsin Standards for Computer Science [rev 20170117-003] 5

Discipline: Computer Science (CS)

Content Area: ​ Algorithms and Programming (AP)

Standard: AP1: ​ Students will recognize and define computational problems using algorithms and
programming

 Performance Indicators (By Grade Band)

Learning Priority K-2 3-5 6-8 9-12

AP1.a: ​Develop algorithms

AP1.a.1.e:
Construct and
execute algorithms
(sets of step-by-step
instructions) that
include sequencing,
and simple loops to
accomplish a task,
both independently
and collaboratively,
with or without a
computing device.

AP1.a.4.i:
Construct and
execute algorithms
(sets of step-by-step
instructions) which
includes sequencing,
loops, and
conditionals to
accomplish a task,
both independently
and collaboratively,
with or without a
computing device.

 AP1.8.h:
Design an algorithm
using sequence,
selection and iteration.

AP1.a.2.e:
Decompose (break
down) a larger
computational
problem into smaller
sub-problems
independently or
with teacher

AP1.a.5.i:
Decompose (break
down) a larger
computational
problem into smaller
sub-problems
independently or in a
collaborative group.

AP1.a.6.m:
Decompose a
computational problem
into parts and create
solutions for one or
more parts.

AP1.a.9.h:
Explain and
demonstrate how
modeling and simulation
can be used to explore
natural phenomena
(e.g., flocking behaviors,
queueing, life cycles)

Wisconsin Standards for Computer Science [rev 20170117-003] 6

guidance. (For
example, to draw a
snowman, we can
draw several
different, simpler
shapes.)

AP1.a.3.e:
Categorize a group of
items based on the
attributes or actions
of each item, with or
without a computing
device.

 AP1.a.7.m:
Identify how
sub-problems could be
recombined to create
something new (for
example, break down
the individual parts that
would be needed to
program a certain type
of game and then show
how the parts could be
reused in other types of
games.)

AP1.a.10.h:
(+) Provide examples of
computationally
solvable problems and
difficult-to-solve
problems.

 AP1.a.11.h:
(+) Decompose a
large-scale
computational problem
by identifying
generalizable patterns
and applying them in a
solution.

 AP1.a.12.h:
(+) Illustrate the flow of
execution of a recursive
algorithm.

Wisconsin Standards for Computer Science [rev 20170117-003] 7

 AP1.a.13.h:
(+) Describe how parallel
processing can be used
to solve large
computational problems
(SETI at Home, FoldIt).

 AP1.a.14.h:
(+) Develop and use a
series of test cases to
verify that a program
performs according to
its design specifications.

 AP1.a.15.h:
(+) Explain the value of
heuristic algorithms
(discovery methods) to
approximate solutions
for difficult to solve
computational
problems.

Standard: AP2: ​ ​ Students will create computational artifacts using algorithms and programming

AP2.a ​Develop and implement an
artifact

AP2.a.1.e:
Construct programs
to accomplish a task
or as a means of
creative expression,
which include
sequencing, events
and simple loops,
using a block-based
visual programing

AP2.a.3.i:
Construct programs
in order to solve a
problem or for
creative expression,
which include
sequencing, events,
loops, conditionals,
parallelism and
variables, using a

AP2.a.6.m:
Develop programs, both
independently and
collaboratively, that
include sequencing with
nested loops and
multiple branches
[Clarification: At this
level, students may use

AP2.a.10.h:
Use user-centered
research and design
techniques (e.g.,
surveys, interviews) to
create software
solutions.

Wisconsin Standards for Computer Science [rev 20170117-003] 8

language, both
independently and
collaboratively (e.g.,
pair programming).

block-based visual
programming
language or text
based language, both
independently and
collaboratively (e.g.,
pair programming).

block-based and/or
text-based languages.]

AP2.a.2.e:
Plan and create a
design document to
illustrate thoughts,
ideas and stories in a
sequential
(step-by-step)
manner e.g., story
map, storyboard,
sequential graphic
organizer).

AP2.a.4.i:
Create a plan as part
of the iterative design
process, both
independently and
with diverse
collaborative teams
(e.g., storyboard,
flowchart,
pseudo-code, story
map).

AP2.a.7.m:
Design, develop, and
present computational
artifacts such as mobile
applications,
independently and
collaboratively to
address social problems.

AP2.a.11.h:
Integrate grade-level
appropriate
mathematical
techniques, concepts
and processes in the
creation of computing
artifacts.

 AP2.a.5.i:
Use mathematical
operations to change
a value stored in a
variable.

AP2.a.8.m:
Use an iterative design
process (e.g., define the
problem, generate
ideas, build, test, and
improve solutions) to
solve computational
problems, both
independently and
collaboratively.

AP2.a.12.h:
Design, develop, and
implement a computing
artifact that responds to
an event (e.g., robot
that responds to a
sensor, mobile app that
responds to a text
message, sprite that
responds to a
broadcast).

Wisconsin Standards for Computer Science [rev 20170117-003] 9

 AP2.a.9.m:
Create variables that
represent different
types of data and
manipulate their values.

AP2.a.13.h:
(+) Decompose a
computational problem
by creating new data
types, functions or
classes.

AP2.a.14.h:
(+) Develop programs
for multiple computing
platforms (e.g.,
computer desktop, web,
mobile).

 AP2.a.15.h:
(+) Implement an AI
algorithm to play a game
against a human
opponent or solve a
problem.

 AP2.a.16.h:
(+) Demonstrate code
reuse by creating
programming solutions
using libraries and APIs.
(e.g., graphics libraries,
maps API).

Standard: AP3: ​ ​Students will be able to communicate about computing ideas

AP3.a ​Recognize and cite sources

AP3.a.1.e:
Give credit to the
source when using
code, music, or
pictures (for

AP3.a.2.i:
Use proper citations
and document when
ideas are borrowed
and changed for their

AP3.a.3.m:
Provide proper
attribution when code is
borrowed or built upon.

AP3.a.4.h:
Compare and contrast
various software
licensing schemes (e.g.,

Wisconsin Standards for Computer Science [rev 20170117-003] 10

example) that were
created by others.

own use (e.g.,, using
pictures created by
others, using music
created by others,
remixing
programming
projects).

open source, freeware,
commercial).

AP3.b ​Communicate about technical
and social issues

AP3.b.1.e:
Follow simple
instructions to
complete a task. For
example, a simple
visual tutorial.

AP3.b.2.i:
Remember basic
concepts/facts
regarding security
issues with general
computer use.

AP3.b.6.m:
Understand security
issues with general
computer use

AP3.b.10.h:
(+) Explain security
issues that might lead to
compromised computer
programs (e.g., circular
references, ambiguous
program calls, lack of
error checking and field
size checking).

 AP3.b.3.i:
Understand that
technology has
impacted society in
both beneficial and
harmful ways.

AP3.b.7.m:
Discuss how technology
has impacted society -
both the beneficial and
harmful effects.

AP3.b.11.h:
Evaluate and analyze
how technology has
impacted our society
and discuss the benefits
and harmful impacts of
a variety of innovations
in technology.

 AP3.b.4.i:
Compare different
problem solving
techniques

AP3.b.8.m:
Compare different
algorithms that may be
used to solve the same
problem in terms of
their speed, clarity and
size (e.g., different
algorithms solve the

AP3.b.12.h:
(+) Compare a variety of
programming languages
and identify features
that make them useful
for solving different
types of problems and
developing different

Wisconsin Standards for Computer Science [rev 20170117-003] 11

same problem, but one
might be faster than the
other). [Clarification:
Students are not
expected to quantify
these differences.]

kinds of systems (e.g.,
declarative, logic,
parallel, functional,
compiled, interpreted,
real-time).

 AP3.b.5.i:
Modify a set of
instructions (for
example, in dance,
cooking, etc) and
discuss how many
paths can lead to the
same result.

AP3.b.9.m:
Modify existing code to
change its functionality,
and discuss the variety
of ways in which to do
this.

AP3.b.13.h:
(+) Modify an existing
program to add
additional functionality
and discuss intended
and unintended
implications (e.g.,
breaking other
functionality).

AP3.c ​Document code

 AP3.c.1.m:
Interpret the flow of
execution of algorithms
and predict their
outcomes. [Clarification:
Algorithms can be
expressed using natural
language, flow and
control diagrams,
comments within code,
and pseudocode).

AP3.c.3.h:
(+) Describe how
artificial intelligence
drives many software
and physical systems
(e.g., autonomous
robots, computer vision,
pattern recognition, text
analysis).

 AP3.c.2.m:
Use documentation
regarding code to
modify programs

AP3.c.4.h:
Write appropriate
documentation for
programs

Wisconsin Standards for Computer Science [rev 20170117-003] 12

 AP3.c.5.h:
Use application
programming interface
(APIs) documentation
resources.

 AP3.c.6.h:
Use online resources to
answer technical
questions

Standard: AP4: ​ ​Students will develop and use abstractions

AP4.a ​Create and use abstractions
(representations) to solve complex
computational problems

AP4.a.1.e:
Use numbers or other
symbols to represent
data (e.g., thumbs
up/down for yes/no,
color by number,
arrows for direction,
encoding/decoding a
word using numbers
of pictographs).

AP4.a.2.i:
Use several existing
functions/procedures
to solve a problem
(e.g., using several
square, circle and
triangle drawing
functions to create a
larger picture).

AP4.a.3.m:
Define and use
functions/procedures
that hide the complexity
of a task and can be
reused to solve similar
tasks. [Clarification:
Students use and
modify, but do not
necessarily create,
functions/procedures
with parameters.]

AP4.a.4.h:
Demonstrate the value
of abstraction for
managing problem
complexity (e.g., using a
list instead of discrete
variables).

 AP4.a.5.h:
Understand the notion
of hierarchy and
abstraction in high-level
languages, translation,
instruction sets, and
logic circuits.

Wisconsin Standards for Computer Science [rev 20170117-003] 13

 AP4.a.6.h :
Deconstruct a complex
problem into simpler
parts using predefined
constructs (e.g.,
functions and
parameters and/or
classes).

 AP4.a.7.h:
(+) Compare and
contrast fundamental
data structures and their
uses (e.g., lists, maps,
arrays, stacks, queues,
trees, graphs).

 AP4.a.8.h:
(+) Critically analyze and
evaluate classic
algorithms (e.g., sorting,
searching) and use in
different contexts,
adapting as appropriate.

 AP4.a.9.h:
(+) Discuss issues that
arise when breaking
large-scale problems
down into parts that
must be processed
simultaneously on
separate systems (e.g.,
cloud computing,

Wisconsin Standards for Computer Science [rev 20170117-003] 14

parallelization,
concurrency).

 AP4.a.10.h:
(+) Define the
functionality of an
abstraction without
implementing the
abstraction.

 AP4.a.11.h:
(+) Evaluate algorithms
(e.g., sorting, searching)
in terms of their
efficiency, correctness
and clarity.

 AP4.a.12.h:
(+) Identify
programming language
features that can be
used to define or specify
an abstraction.

 AP4.a.13.h:
(+) Identify abstractions
used in a solution
(program or software
artifact) and reuse those
abstractions to solve a
different problem.

Standard: AP5: ​ ​Students will be able to collaborate with diverse teams

AP5.a ​Use a variety of resources to
work together to solve
computational problems

AP5.a.1.e:
Work together with a
team to create a

AP5.a.3.i:
Apply collaboration
strategies to support

AP5.a.5.m:
Solicit and integrate
peer feedback as

AP5.a.6.h:

Wisconsin Standards for Computer Science [rev 20170117-003] 15

 solution to a
computational
problem.

problem solving
within the design
cycle of a program.

appropriate to develop
or refine a program.

Design and develop a
software artifact
working in a team.

AP5.a.2.e:
Use teachers,
parents, and other
resources to solve a
computational
problem.

AP5.a.4.i:
Understand there are
many resources that
can be used/tapped
to solve a problem.

 AP5.a.7.h:
Demonstrate how
diverse collaborating
impacts the design and
development of
software products (e.g.,
discussing real-world
examples of products
which have been
improved through
having a diverse design
team or reflecting on
their own team's
development
experience).

 AP5.a.8.h:
(+) Demonstrate
software life cycle
processes (e.g., spiral,
waterfall) by
participating on
software project teams
(e.g., community
service project with
real-world clients).

Wisconsin Standards for Computer Science [rev 20170117-003] 16

 AP5.a.9.h:
(+) Use version control
systems, Integrated
Development
Environments (IDEs),
and collaboration tools
and practices (code
documentation) in a
group software project.

AP5.b ​Fostering an inclusive
computing culture

AP5.b.1.e:
Understand the
value that all
members bring to the
table with difference
of gender, race,
religion,etc.

 AP5.b.2.m:
Analyze team members
strengths and utilize
them.

AP5.b.3.h:
Create design teams
taking into account the
strengths and
perspectives of potential
team members.

Standard: AP6: ​ ​Students will be able to test and refine computational solutions

AP6.a ​Test and debug
computational solutions

AP6.a.1.e:
Analyze and debug
(fix) an algorithm that
includes sequencing
and simple loops,
with or without a
computing device.

 AP6.a.2.i:
Analyze and debug
(fix) an algorithm
which includes
sequencing, events,
loops, conditionals,
parallelism, and
variables.

AP6.a.3.m:
Use testing and
debugging methods to
ensure program
correctness and
completeness.

AP6.a.4.h:
Use a systematic
approach and debugging
tools to independently
debug a program (e.g.,
setting breakpoints,
inspecting variables with
a debugger).

Wisconsin Standards for Computer Science [rev 20170117-003] 17

AP6.b ​Develop and apply success
criteria

 AP6.b.1.i:
Determine the
correctness of a
computational
problem solution by
listening to a
classmate describe
the solution.

AP6.b.2.m:
Apply a rubric to
determine if and how
well a program meets
objectives

AP6.b.3.h:
(+) Evaluate key qualities
of a program (e.g.,
correctness, usability,
readability, efficiency,
portability, scalability)
through a process such
as a code review.

Wisconsin Standards for Computer Science [rev 20170117-003] 18

Content Area:
Computing Systems

(CS)

Wisconsin Standards for Computer Science [rev 20170117-003] 19

Discipline: Computer Science (CS)

Content Area: ​ Computing Systems (CS)

Standard: CS1: Students will communicate about computing systems

 Performance Indicators (By Grade Band)

Learning Priority K-2​ (e) 3-5 (i) 6-8​ (m) 9-12​ (h)

CS1.a: ​Identification of
hardware and software
components

CS1.a.1.e:
Identify and use software
that controls
computational devices to
accomplish a task (e.g.,
use an app to draw on
the screen, use software
to write a story or control
robots).

CS1.a.4.m:
Justify the suitability of
hardware and software
chosen to accomplish a
task (e.g., comparison of
the features of a tablet vs.
desktop, selecting which
sensors and platform to
use in building a robot or
developing a mobile app).

CS1.a.5.h:
Develop and apply
criteria (e.g., power
consumption,
processing speed,
storage space, battery
life, cost, operating
system) for evaluating a
computer system for a
given purpose (e.g.,
system specification
needed to run a game,
web browsing, graphic
design or video editing).

CS1.a.2.e:
Use appropriate
terminology in naming
and describing the
function of common
computing devices and

CS1.a.3.i:
Use appropriate
terminology in naming
internal and external
components of
computing devices and

 CS1.a.6.h:
(+) Identify the
functionality of various
categories of hardware
components and
communication

Wisconsin Standards for Computer Science [rev 20170117-003] 20

components (e.g.,
desktop computer,
laptop computer, tablet
device, monitor,
keyboard, mouse,
printer).

describing their
relationships,
capabilities, and
limitations.

between them (e.g.,
physical layers, logic
gates, chips, input and
output devices).

CS1.b: ​Understand how
the components of a
computer system work
together

CS1.b.1.e:
Identify the components
of a computer system
and what the basic
functions are (hard drive,
memory, etc.) as well as
external features and
their uses (printers,
scanners, external hard
drives, etc.) For lower
elementary students,
common hardware like
iPads, Kindles, or
Chromebooks can be
used.

CS1.b.2.i:
Model how a computer
system works.
[Clarification: Only
includes basic elements
of a computer system,
such as input, output,
processor, sensors, and
storage.]

 CS1.b.3.h:
(+) ​Explain the role of
operating systems (e.g.,
how programs are
stored in memory, how
data is
organized/retrieved,
how processes are
managed and
multi-tasked).

Standard: CS2: Students will test and refine computing systems

CS2.a​: Problem solving,
trouble-shooting,
debugging

CS2.a.1.e:
Identify, using accurate
terminology, simple
hardware and software
problems that may
occur during use (e.g.,
app or program not
working as expected, no

CS2.a.2.i:
Identify, using accurate
terminology, simple
hardware and software
problems that may
occur during use, and
apply strategies for

CS2.a.3.m:
Use a systematic process
to identify the source of a
problem within individual
and connected devices
(e.g., follow a
troubleshooting flow
diagram, make changes to

Wisconsin Standards for Computer Science [rev 20170117-003] 21

sound, device won't turn
on).

solving problems (e.g.,
reboot device, check for
power, check network
availability, close and
reopen app).

software to see if
hardware will work,
restart device, check
connections, swap in
working components).

Standard: CS3: Students will develop and use abstractions in computing systems

CS3.a:​ Generalization in
computer systems

 CS3.a.1.m:
Analyze the relationship
between a device's
computational
components and its
capabilities. [Clarification:
Computing Systems
include not only
computers, but also cars,
microwaves,
smartphones, traffic
lights, and flash drives.]

CS3.a.2.h:
Demonstrate the role
and interaction of a
computer embedded
within a physical
system, such as a
consumer electronic,
biological system, or
vehicle, by creating a
diagram, model,
simulation, or
prototype.

 CS3.a.3.h:
Describe the steps
necessary for a
computer to execute
high-level source code
(e.g., compilation to
machine language,
interpretation,
fetch-decode-execute
cycle).

Wisconsin Standards for Computer Science [rev 20170117-003] 22

Standard: CS4: Students will create and modify computing systems

CS4.a​: Modifying and
creating artifacts

 CS4.a.1.m:
Extend or modify existing
programs to add simple
features and behaviors
using different forms of
inputs and outputs (e.g.,
inputs such as sensors,
mouse clicks, data sets;
outputs such as text,
graphics, sounds).

CS4.a.2.h:
Create, extend, or
modify existing
programs to add new
features and behaviors
using different forms of
inputs and outputs (e.g.,
inputs such as sensors,
mouse clicks, data sets;
outputs such as text,
graphics, sounds).

 CS4.a.3.h:
(+) Create a new artifact
that uses a variety of
forms of inputs and
outputs (e.g., inputs
such as sensors, mouse
clicks, data sets; outputs
such as text, graphics,
sounds).

Wisconsin Standards for Computer Science [rev 20170117-003] 23

Content Area:
Data and Analysis

(DA)

Wisconsin Standards for Computer Science [rev 20170117-003] 24

Discipline: Computer Science (CS)

Content Area: ​ Data and Analysis (DA)

Standard: DA1: Students will create computational artifacts using data and analysis

 Performance Indicators (By Grade Band)

Learning Priority K-2 3-5 6-8 9-12

DA1.a: ​Techniques for
representing, and
manipulating data.

 DA1.a.1.i:
Use numeric values to
represent non-numeric
ideas in the computer
(binary, ASCII, pixel
attributes such as RGB).

DA1.a.3.m:
Represent data using
different encoding
schemes (e.g., binary,
Unicode, Morse code,
shorthand,
student-created codes).

DA1.a.5.h:
Convert between
binary, decimal, and
hexadecimal
representations of data
(e.g., convert
hexadecimal color
codes to decimal
percentages,
ASCII/Unicode
representation).

 DA1.a.2.i:
Answer a question by using
a computer to manipulate
(e.g., sort, total and/or
average, chart, graph) and
analyze data that has been
collected by the class or
student.

DA1.a.4.m:
Revise computational
models to more
accurately reflect
real-world systems
(e.g., ecosystems,
epidemics, spread of
ideas).

DA1.a.6.h:
Create computational
models that simulate
real-world systems
(e.g., ecosystems,
epidemics, spread of
ideas).

Wisconsin Standards for Computer Science [rev 20170117-003] 25

 DA1.a.7.h:
(+) Discuss how data
sequences (e.g., binary,
hexadecimal, octal) can
be interpreted in a
variety of forms (e.g.,
instructions, numbers,
text, sound, image).

Standard: DA2: Students will recognize and define data in computational problems

DA2.a: ​Categorizing and
analyzing data

DA2.a.1.e:
Sort objects into buckets,
recognizing relevant and/or
irrelevant data (i.e. one of
these things is not like the
other)

DA2.a.2.i:
Choose appropriate
classifications or grouping
for data by shape, color,
size, or other attributes.

DA2.a.3.m:
Develop a strategy to
answer a question by
using a computer to
manipulate (e.g., sort,
total and/or average,
chart, graph) and
analyze data that has
been collected by the
class or student.

DA2.a.4.h:
Apply basic techniques
for locating and
collecting small- and
large-scale data sets
(e.g., creating and
distributing user
surveys, accessing
real-world data sets).

DA2.b: ​Gathering data

 DA2.b.1.h:
Discuss techniques
used to store, process,
and retrieve different
amounts of information
(e.g., files, databases,
data warehouses).

 DA2.b.2.h:
(+)​ ​Use various data
collection techniques

Wisconsin Standards for Computer Science [rev 20170117-003] 26

for different types of
computational
problems (e.g., mobile
device GPS, user
surveys, embedded
system sensors, open
data sets, social media
data sets).

Standard: DA3: Students will communicate about data in computing

DA3.a: ​Communicating

DA3.a.1.e:
Collect data over time and
organize it in a chart or
graph in order to make a
prediction.

 DA3.a.2.m:
Describe how different
formats of stored data
represent tradeoffs
between quality and
size. [Clarification:
compare examples of
music, text and/or
image formats.]

DA3.a.4.h:
Use computational
tools to collect,
transform, and organize
data about a problem
to explain to others.

 DA3.a.3.m:
Explain the processes
used to collect,
transform, and analyze
data to solve a problem
using computational
tools (e.g., use an app
or spreadsheet form to
collect data, decide

Wisconsin Standards for Computer Science [rev 20170117-003] 27

which data to use or
ignore, and choose a
visualization method).

Standard: DA4: Students will develop and use data abstractions

DA4.a​: Modelling

DA4.a.1.e:
Use a computing device to
store, search, retrieve,
modify, and delete
information and define the
information stored as data.

DA4.a.3.i:
Create a computational
artifact to model the
attributes and behaviors
associated with a concept
(e.g., solar system, life cycle
of a plant).

 DA4.a.4.h:
Analyze the
representation
tradeoffs among
various forms of digital
information (e.g., lossy
vs. lossless
compression, encrypted
vs. unencrypted,
various image
representations).

DA4.a.2.e:
Create a model of an object
or process in order to
identify patterns and
essential elements (e.g.,
water cycle, butterfly life
cycle, seasonal weather
patterns).

 DA4.a.5.h:
(+) Evaluate the ability
of models and
simulations to
formulate, refine, and
test hypotheses.

DA4.b:​ Patterns

 DA4.b.1.h:
(+)Use data analysis to
identify significant
patterns in complex
systems (e.g., take

Wisconsin Standards for Computer Science [rev 20170117-003] 28

existing data sets and
make sense of them).

 DA4.b.2.h:
(+) Identify
mathematical and
computational patterns
through modeling and
simulation (e.g.,
regression,
Runge-Kutta, queueing
theory, discrete event
simulation).

Wisconsin Standards for Computer Science [rev 20170117-003] 29

Content Area:
Impacts of Computing

(IC)

Wisconsin Standards for Computer Science [rev 20170117-003] 30

Discipline: Computer Science (CS)

Content Area: ​ Impacts of Computing (IC)

Standard: IC1: ​ ​Students will understand the impact technology has on our everyday lives
by describing the beneficial and harmful effects computing innovations have had and will have on
our economy, our culture, and our relationships.

 Performance Indicators (By Grade Band)

Learning Priority K-2 3-5 6-8 9-12

IC1.a: ​Understand the effects of
computing on the economy and
culture.

IC1.a.1.e:
Compare and
contrast examples
of how computing
technology has
changed and
improved the way
people live, work,
and interact.

IC1.a.2.i:
Evaluate and
describe the
positive and
negative impacts of
the pervasiveness
of computers and
computing in daily
life (e.g.,
downloading videos
and audio files,
electronic
appliances, wireless
Internet, mobile
computing devices,
GPS systems,
wearable
computing).

IC1.a.4.m:
Provide examples of how
computational artifacts
and devices impact health
and wellbeing, both
positively and negatively.

IC1.a.6.h:
Debate the social and
economic implications
associated with ethical
and unethical computing
practices (e.g.,
intellectual property
rights, hacktivism,
software piracy, new
computers shipped with
malware).

Wisconsin Standards for Computer Science [rev 20170117-003] 31

 IC1.a.3.i:
Generate examples
of how computing
can affect society,
and also how
societal values can
shape computing
choices.

IC1.a.5.m:
Explain how computer
science fosters innovation
and enhances nearly all
careers and disciplines.

IC1.a.7.h:
Discuss implications of
the collection and
large-scale analysis of
information about
individuals (e.g., how
businesses, social media,
and government collect
and use personal data).

 IC1.a.8.h:
Compare and debate the
positive and negative
impacts of computing on
behavior and culture
(e.g., evolution from
hitchhiking to
ride-sharing apps, online
accommodation rental
services).

 IC1.a.9.h:
Describe how
computation shares
features with art and
music by translating
human intention into an
artifact.

 IC1.a.10.h:
(+) Develop criteria to
evaluate the beneficial
and harmful effects of
computing innovations on
people and society.

Wisconsin Standards for Computer Science [rev 20170117-003] 32

IC1.b: ​Understand the effects of
computing on communication and
relationships

IC1.b.1.e:
Explain the
differences
between
communicating
electronically and
communicating in
person.

IC1.b.2.i:
Compare and
contrast the effects
of communicating
electronically to
communicating in
person.

IC1.b.3.m:
List beneficial and
harmful effects of
personal electronic
communication and social
electronic
communication.

IC1.b.5.h:
Evaluate the negative
impacts of electronic
communication on
personal relationships
and evaluate differences
between face-to-face and
electronic
communication.

 IC1.b.6.h:
(+) Create a list of
practices that individuals
and organizations can use
to encourage proper use
of both electronic and
face-to-face
communication.

 IC1.b.4.m:
Describe ways in which
the Internet impacts
global communication
and collaborating.

IC1.b.7.h:
(+) Evaluate the negative
impacts on societal
discourse caused by
social media and
electronic communities.

Standard: IC2: Students will experience learning within a collaborative, inclusive computing culture
and explain the steps needed to ensure that all people have access to computing.

IC2.a ​Understand the effects of the
Digital Divide

 IC2.a.1.i:
Brainstorm ways in
which computing
devices and the
Internet could be
made more

IC2.a.2.m:
Explain the impact of the
digital divide (i.e., uneven
access to computing,
computing education,

IC2.a.3.h:
(+) Evaluate the impact of
equity, access, and
influence on the
distribution of computing

Wisconsin Standards for Computer Science [rev 20170117-003] 33

available to all
people.

and interfaces) on access
to critical information.

resources in a global
society.

IC2.b: ​Test and refine digital artifacts
for accessibility

 IC2.b.1.i:
Brainstorm ways in
which computing
devices could be
made more
accessible to all
users.

IC2.b.2.m:
Critically evaluate and
redesign a computational
artifact to remove
barriers to universal
access (e.g., using
captions on images, high
contrast colors, and/or
larger font sizes).

IC2.b.3.h:
Design a user interface
(e.g., webpages, mobile
applications, animations)
to be more inclusive,
accessible, and
minimizing the impact of
the designer's inherent
bias.

IC2.c: ​Collaborate in the creation of
digital artifacts

 IC2.c.1.i:
Use the Internet to
work with another
student to solve a
problem or reach a
goal.

IC2.c.3.m:
Use the Internet to work
with a group of people to
solve a problem or reach
a goal who are not
physically near.

IC2.c.4.h:
Select, observe, and
contribute to global
collaboration in the
development of a
computational artifact
(e.g., contribute the
resolution of a bug in an
open-source project
hosted on GitHub, or
contribute to a Wikipedia
article).

 IC2.c.2.i:
Seek out and
compare diverse
perspectives,
synchronously or
asynchronously, to
improve a project.

 IC2.c.5.h:
Demonstrate how
computing enables new
forms of experience,
expression,
communication, and
collaboration.

Wisconsin Standards for Computer Science [rev 20170117-003] 34

Standard: IC3: Students will understand the importance of proper use of data and information in a
computing society.

IC3.a ​Understand intellectual
property and fair use

 IC3.a.1.i:
Use resources from
the World Wide
Web in making
artifacts and
recognize that the
work came from
others.

IC3.a.2.m:
Understand laws
associated with digital
information such as
intellectual property, fair
use, and Creative
Commons.

IC3.a.4.h:
Compare and contrast
information access and
distribution rights.

 IC3.a.3.m:
Describe ethical issues
that relate to computing
devices and networks
(e.g., equity of access,
security, hacking,
intellectual property,
copyright, Creative
Commons licensing, and
plagiarism).

IC3.b ​Assess the practice of digital
privacy

IC3.b.1.e:
Respect other
students’
information and
refrain from
accessing others’
devices or accounts
without permission.

IC3.b.2.i:
Understand what
kinds of digital
information is
considered private,
take steps to keep
their information
private, and respect
the privacy of other

IC3.b.4.m:
Summarize negative and
positive impacts of using
data and information to
categorize people, predict
behavior, and make
recommendations based
on those predictions (e.g.,
customizing search
results or targeted

IC3.b.5.h:
Investigate misuses of
private digital
information in our
society.

Wisconsin Standards for Computer Science [rev 20170117-003] 35

students’
information.

advertising, based on
previous browsing
history, can save search
time and limit options at
the same time).

 IC3.b.3.i:
Explain problems
that relate to using
computing devices
and networks (e.g.,
logging out to deter
others from using
your account,
cyberbullying,
privacy of personal
information, and
ownership).

 IC3.b.6.h:
Debate laws regarding an
individual’s digital privacy
and be able to explain the
main arguments from
each side.

IC3.c: ​Assess interrelationship
between computing and society

 IC3.c.1.h:
(+) Design and implement
a study that evaluates
how computation has
revolutionized an aspect
of our culture, or predicts
how an aspect might
evolve (e.g., education,
healthcare,
art/entertainment,
energy).

 IC3.c.2.h:
(+) Debate laws and
regulations that impact

Wisconsin Standards for Computer Science [rev 20170117-003] 36

the development and use
of software.

Wisconsin Standards for Computer Science [rev 20170117-003] 37

Content Area:
Networking and the

Internet (NI)

Wisconsin Standards for Computer Science [rev 20170117-003] 38

Discipline: Computer Science (CS)

Content Area: ​ Networking and the Internet (NI)

Standard: NI1: ​ ​Students will understand the importance of security when using technology

 Performance Indicators (By Grade Band)

Learning Priority K-2 3-5 6-8 9-12

NI1.a: ​Use secure practices for
personal computing

NI1.a.1.e:
Use secure
practices (such as
passwords) to
protect private
information and
discuss the effects
of misuse.

NI1.a.2.i:
Create examples of
strong passwords,
explain why strong
passwords should
be used, and
demonstrate
proper use and
protection of
personal
passwords.

NI1.a.3.m:
Summarize security risks
associated with weak
passwords, lack of
encryption, insecure
transactions, and
persistence of data.

NI1.a.4.h:
Provide examples of
personal data that should
be kept secure and the
methods by which
individuals keep their
private data secure.

NI1.b: ​Understand the importance of
institutional security

 NI1.b.1.i:
Give examples of
information that
organizations keep
private as opposed
to information that
they make public.

NI1.b.2.m:
Explain the principles of
information security
(confidentiality, integrity,
availability) and
authentication
techniques.

NI1.b.3.h:
Compare and contrast
multiple viewpoints on
cybersecurity (e.g., from
the perspective of
security experts, privacy
advocates, the
government).

Wisconsin Standards for Computer Science [rev 20170117-003] 39

 NI1.b.4.h:
Identify digital and
physical strategies to
secure networks and
discuss the tradeoffs
between ease of access
and need for security.

Standard: NI2: Students will understand how information is sent by the internet

NI2.a: ​Demonstrate how the
internet works at the physical layer

NI2.a.1.e:
Use a physical tool
(e.g. flashlight,
string) to
communicate with
another student.

NI2.a.3.i:
Model how a device
on a network sends
a message from
one device (sender)
to another
(receiver) while
following specific
rules.

NI2.a.6.m:
Simulate how information
is transmitted as packets
through multiple devices
over the internet and
networks.

NI2.a.8.h:
Illustrate the basic
components of computer
networks (e.g., draw
logical and topological
diagrams of networks
including routers,
switches, servers, and
end user devices; create
model with string and
paper).

NI2.a.2.e:
Differentiate
between using the
internet and not
using the internet
(i.e. identify
difference between
local and remote
computation)

NI2.a.4.i:
Provide examples
of computer use
that involves the
Internet.

NI2.a.7.m:
Explain using basic terms
how a wi-fi or cellular
network allows Internet
information to be
transmitted from a server
to their device.

NI2.a.9.h:
(+) Explain ways in which
the Internet is
decentralized and
fault-tolerant.

Wisconsin Standards for Computer Science [rev 20170117-003] 40

 NI2.a.5.i:
Explain in a basic
way how Internet
information arrives
at a computer.

 NI2.a.10.h:
(+) Simulate and discuss
the issues (e.g.,
bandwidth, load, delay,
topology) that impact
network functionality
(e.g., use free network
simulators).

NI2.b: ​Demonstrate how the
internet works at the protocol layer

 NI2.b.1.i:
Act out a protocol
that people use in
common everyday
communications
(such as checking
out a book from the
library, meeting a
new person,
making an
appointment,
playing a class
game, or calling a
friend on the phone
to invite them over.

NI2.b.2.m:
Define the term protocol.
provide an example of
protocols in daily life, and
explain their use on the
Internet.

NI2.b.3.h:
Describe key protocols
and underlying processes
of Internet-based services
(e.g., http/https and
SMTP/IMAP, routing
protocols).

NI2.c: ​Demonstrate how the
internet works at the addressing
layer

NI2.c.1.e:
Devise a system for
sending a physical
message to anyone
in their school by
using addressing
techniques (e.g.,
address valentine
envelopes by

NI2.c.2.i:
Devise a system for
sending a physical
message to anyone
in their school by
using addressing
techniques, and
then draw a tree or
visual

NI2.c.3.m:
Explain the hierarchical
structure of the Internet
Domain System.

NI2.c.4.h:
(+) Evaluate how the
hierarchical nature of the
Domain Name System
helps the Internet work
efficiently.

Wisconsin Standards for Computer Science [rev 20170117-003] 41

student first name,
and teacher, grade,
or room).

representation of
their addressing
system, and finally
act out their
addressing system
by sending
messages.

NI2.d: ​Demonstrate and explain
encryption methods

N12.d.1.i:
Secretly
communicate
across a classroom
using a method of
their own design
(e.g., pictures,
physical movement,
text).

NI2.d.2.m:
Encode and decode
text-based messages
using basic algorithms
(e.g., shift cipher,
substitution cipher).

NI2.d.3.h:
Write a program that
performs basic
encryption (e.g., shift
cipher, substitution
cipher).

 NI2.d.4.h:
(+) Explain the features of
public key cryptography.

 NI2.d.5.h:
(+) Explore security
policies by implementing
and comparing
encryption and
authentication strategies
(e.g., secure coding,
safeguarding keys).

Wisconsin Standards for Computer Science [rev 20170117-003] 42

